(0) Obligation:

Clauses:

avg(s(X), Y, Z) :- avg(X, s(Y), Z).
avg(X, s(s(s(Y))), s(Z)) :- avg(s(X), Y, Z).
avg(0, 0, 0).
avg(0, s(0), 0).
avg(0, s(s(0)), s(0)).

Query: avg(g,g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

avgA(s(s(T23)), T24, T26) :- avgA(T23, s(s(T24)), T26).
avgA(s(T42), s(s(T43)), s(T45)) :- avgA(s(T42), T43, T45).
avgA(s(0), 0, 0).
avgA(s(0), s(0), s(0)).
avgA(s(T61), s(s(s(T62))), s(T64)) :- avgA(s(s(T61)), T62, T64).
avgA(T101, s(s(s(T102))), s(T104)) :- avgA(T101, s(T102), T104).
avgA(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) :- avgA(s(s(T123)), T124, T126).
avgA(0, 0, 0).
avgA(0, s(0), 0).
avgA(0, s(s(0)), s(0)).

Query: avgA(g,g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
avgA_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

avgA_in_gga(s(s(T23)), T24, T26) → U1_gga(T23, T24, T26, avgA_in_gga(T23, s(s(T24)), T26))
avgA_in_gga(s(T42), s(s(T43)), s(T45)) → U2_gga(T42, T43, T45, avgA_in_gga(s(T42), T43, T45))
avgA_in_gga(s(0), 0, 0) → avgA_out_gga(s(0), 0, 0)
avgA_in_gga(s(0), s(0), s(0)) → avgA_out_gga(s(0), s(0), s(0))
avgA_in_gga(s(T61), s(s(s(T62))), s(T64)) → U3_gga(T61, T62, T64, avgA_in_gga(s(s(T61)), T62, T64))
avgA_in_gga(T101, s(s(s(T102))), s(T104)) → U4_gga(T101, T102, T104, avgA_in_gga(T101, s(T102), T104))
avgA_in_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → U5_gga(T123, T124, T126, avgA_in_gga(s(s(T123)), T124, T126))
avgA_in_gga(0, 0, 0) → avgA_out_gga(0, 0, 0)
avgA_in_gga(0, s(0), 0) → avgA_out_gga(0, s(0), 0)
avgA_in_gga(0, s(s(0)), s(0)) → avgA_out_gga(0, s(s(0)), s(0))
U5_gga(T123, T124, T126, avgA_out_gga(s(s(T123)), T124, T126)) → avgA_out_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126)))
U4_gga(T101, T102, T104, avgA_out_gga(T101, s(T102), T104)) → avgA_out_gga(T101, s(s(s(T102))), s(T104))
U3_gga(T61, T62, T64, avgA_out_gga(s(s(T61)), T62, T64)) → avgA_out_gga(s(T61), s(s(s(T62))), s(T64))
U2_gga(T42, T43, T45, avgA_out_gga(s(T42), T43, T45)) → avgA_out_gga(s(T42), s(s(T43)), s(T45))
U1_gga(T23, T24, T26, avgA_out_gga(T23, s(s(T24)), T26)) → avgA_out_gga(s(s(T23)), T24, T26)

The argument filtering Pi contains the following mapping:
avgA_in_gga(x1, x2, x3)  =  avgA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avgA_out_gga(x1, x2, x3)  =  avgA_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

avgA_in_gga(s(s(T23)), T24, T26) → U1_gga(T23, T24, T26, avgA_in_gga(T23, s(s(T24)), T26))
avgA_in_gga(s(T42), s(s(T43)), s(T45)) → U2_gga(T42, T43, T45, avgA_in_gga(s(T42), T43, T45))
avgA_in_gga(s(0), 0, 0) → avgA_out_gga(s(0), 0, 0)
avgA_in_gga(s(0), s(0), s(0)) → avgA_out_gga(s(0), s(0), s(0))
avgA_in_gga(s(T61), s(s(s(T62))), s(T64)) → U3_gga(T61, T62, T64, avgA_in_gga(s(s(T61)), T62, T64))
avgA_in_gga(T101, s(s(s(T102))), s(T104)) → U4_gga(T101, T102, T104, avgA_in_gga(T101, s(T102), T104))
avgA_in_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → U5_gga(T123, T124, T126, avgA_in_gga(s(s(T123)), T124, T126))
avgA_in_gga(0, 0, 0) → avgA_out_gga(0, 0, 0)
avgA_in_gga(0, s(0), 0) → avgA_out_gga(0, s(0), 0)
avgA_in_gga(0, s(s(0)), s(0)) → avgA_out_gga(0, s(s(0)), s(0))
U5_gga(T123, T124, T126, avgA_out_gga(s(s(T123)), T124, T126)) → avgA_out_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126)))
U4_gga(T101, T102, T104, avgA_out_gga(T101, s(T102), T104)) → avgA_out_gga(T101, s(s(s(T102))), s(T104))
U3_gga(T61, T62, T64, avgA_out_gga(s(s(T61)), T62, T64)) → avgA_out_gga(s(T61), s(s(s(T62))), s(T64))
U2_gga(T42, T43, T45, avgA_out_gga(s(T42), T43, T45)) → avgA_out_gga(s(T42), s(s(T43)), s(T45))
U1_gga(T23, T24, T26, avgA_out_gga(T23, s(s(T24)), T26)) → avgA_out_gga(s(s(T23)), T24, T26)

The argument filtering Pi contains the following mapping:
avgA_in_gga(x1, x2, x3)  =  avgA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avgA_out_gga(x1, x2, x3)  =  avgA_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

AVGA_IN_GGA(s(s(T23)), T24, T26) → U1_GGA(T23, T24, T26, avgA_in_gga(T23, s(s(T24)), T26))
AVGA_IN_GGA(s(s(T23)), T24, T26) → AVGA_IN_GGA(T23, s(s(T24)), T26)
AVGA_IN_GGA(s(T42), s(s(T43)), s(T45)) → U2_GGA(T42, T43, T45, avgA_in_gga(s(T42), T43, T45))
AVGA_IN_GGA(s(T42), s(s(T43)), s(T45)) → AVGA_IN_GGA(s(T42), T43, T45)
AVGA_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → U3_GGA(T61, T62, T64, avgA_in_gga(s(s(T61)), T62, T64))
AVGA_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → AVGA_IN_GGA(s(s(T61)), T62, T64)
AVGA_IN_GGA(T101, s(s(s(T102))), s(T104)) → U4_GGA(T101, T102, T104, avgA_in_gga(T101, s(T102), T104))
AVGA_IN_GGA(T101, s(s(s(T102))), s(T104)) → AVGA_IN_GGA(T101, s(T102), T104)
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → U5_GGA(T123, T124, T126, avgA_in_gga(s(s(T123)), T124, T126))
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → AVGA_IN_GGA(s(s(T123)), T124, T126)

The TRS R consists of the following rules:

avgA_in_gga(s(s(T23)), T24, T26) → U1_gga(T23, T24, T26, avgA_in_gga(T23, s(s(T24)), T26))
avgA_in_gga(s(T42), s(s(T43)), s(T45)) → U2_gga(T42, T43, T45, avgA_in_gga(s(T42), T43, T45))
avgA_in_gga(s(0), 0, 0) → avgA_out_gga(s(0), 0, 0)
avgA_in_gga(s(0), s(0), s(0)) → avgA_out_gga(s(0), s(0), s(0))
avgA_in_gga(s(T61), s(s(s(T62))), s(T64)) → U3_gga(T61, T62, T64, avgA_in_gga(s(s(T61)), T62, T64))
avgA_in_gga(T101, s(s(s(T102))), s(T104)) → U4_gga(T101, T102, T104, avgA_in_gga(T101, s(T102), T104))
avgA_in_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → U5_gga(T123, T124, T126, avgA_in_gga(s(s(T123)), T124, T126))
avgA_in_gga(0, 0, 0) → avgA_out_gga(0, 0, 0)
avgA_in_gga(0, s(0), 0) → avgA_out_gga(0, s(0), 0)
avgA_in_gga(0, s(s(0)), s(0)) → avgA_out_gga(0, s(s(0)), s(0))
U5_gga(T123, T124, T126, avgA_out_gga(s(s(T123)), T124, T126)) → avgA_out_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126)))
U4_gga(T101, T102, T104, avgA_out_gga(T101, s(T102), T104)) → avgA_out_gga(T101, s(s(s(T102))), s(T104))
U3_gga(T61, T62, T64, avgA_out_gga(s(s(T61)), T62, T64)) → avgA_out_gga(s(T61), s(s(s(T62))), s(T64))
U2_gga(T42, T43, T45, avgA_out_gga(s(T42), T43, T45)) → avgA_out_gga(s(T42), s(s(T43)), s(T45))
U1_gga(T23, T24, T26, avgA_out_gga(T23, s(s(T24)), T26)) → avgA_out_gga(s(s(T23)), T24, T26)

The argument filtering Pi contains the following mapping:
avgA_in_gga(x1, x2, x3)  =  avgA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avgA_out_gga(x1, x2, x3)  =  avgA_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
AVGA_IN_GGA(x1, x2, x3)  =  AVGA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVGA_IN_GGA(s(s(T23)), T24, T26) → U1_GGA(T23, T24, T26, avgA_in_gga(T23, s(s(T24)), T26))
AVGA_IN_GGA(s(s(T23)), T24, T26) → AVGA_IN_GGA(T23, s(s(T24)), T26)
AVGA_IN_GGA(s(T42), s(s(T43)), s(T45)) → U2_GGA(T42, T43, T45, avgA_in_gga(s(T42), T43, T45))
AVGA_IN_GGA(s(T42), s(s(T43)), s(T45)) → AVGA_IN_GGA(s(T42), T43, T45)
AVGA_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → U3_GGA(T61, T62, T64, avgA_in_gga(s(s(T61)), T62, T64))
AVGA_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → AVGA_IN_GGA(s(s(T61)), T62, T64)
AVGA_IN_GGA(T101, s(s(s(T102))), s(T104)) → U4_GGA(T101, T102, T104, avgA_in_gga(T101, s(T102), T104))
AVGA_IN_GGA(T101, s(s(s(T102))), s(T104)) → AVGA_IN_GGA(T101, s(T102), T104)
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → U5_GGA(T123, T124, T126, avgA_in_gga(s(s(T123)), T124, T126))
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → AVGA_IN_GGA(s(s(T123)), T124, T126)

The TRS R consists of the following rules:

avgA_in_gga(s(s(T23)), T24, T26) → U1_gga(T23, T24, T26, avgA_in_gga(T23, s(s(T24)), T26))
avgA_in_gga(s(T42), s(s(T43)), s(T45)) → U2_gga(T42, T43, T45, avgA_in_gga(s(T42), T43, T45))
avgA_in_gga(s(0), 0, 0) → avgA_out_gga(s(0), 0, 0)
avgA_in_gga(s(0), s(0), s(0)) → avgA_out_gga(s(0), s(0), s(0))
avgA_in_gga(s(T61), s(s(s(T62))), s(T64)) → U3_gga(T61, T62, T64, avgA_in_gga(s(s(T61)), T62, T64))
avgA_in_gga(T101, s(s(s(T102))), s(T104)) → U4_gga(T101, T102, T104, avgA_in_gga(T101, s(T102), T104))
avgA_in_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → U5_gga(T123, T124, T126, avgA_in_gga(s(s(T123)), T124, T126))
avgA_in_gga(0, 0, 0) → avgA_out_gga(0, 0, 0)
avgA_in_gga(0, s(0), 0) → avgA_out_gga(0, s(0), 0)
avgA_in_gga(0, s(s(0)), s(0)) → avgA_out_gga(0, s(s(0)), s(0))
U5_gga(T123, T124, T126, avgA_out_gga(s(s(T123)), T124, T126)) → avgA_out_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126)))
U4_gga(T101, T102, T104, avgA_out_gga(T101, s(T102), T104)) → avgA_out_gga(T101, s(s(s(T102))), s(T104))
U3_gga(T61, T62, T64, avgA_out_gga(s(s(T61)), T62, T64)) → avgA_out_gga(s(T61), s(s(s(T62))), s(T64))
U2_gga(T42, T43, T45, avgA_out_gga(s(T42), T43, T45)) → avgA_out_gga(s(T42), s(s(T43)), s(T45))
U1_gga(T23, T24, T26, avgA_out_gga(T23, s(s(T24)), T26)) → avgA_out_gga(s(s(T23)), T24, T26)

The argument filtering Pi contains the following mapping:
avgA_in_gga(x1, x2, x3)  =  avgA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avgA_out_gga(x1, x2, x3)  =  avgA_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
AVGA_IN_GGA(x1, x2, x3)  =  AVGA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVGA_IN_GGA(s(T42), s(s(T43)), s(T45)) → AVGA_IN_GGA(s(T42), T43, T45)
AVGA_IN_GGA(s(s(T23)), T24, T26) → AVGA_IN_GGA(T23, s(s(T24)), T26)
AVGA_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → AVGA_IN_GGA(s(s(T61)), T62, T64)
AVGA_IN_GGA(T101, s(s(s(T102))), s(T104)) → AVGA_IN_GGA(T101, s(T102), T104)
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → AVGA_IN_GGA(s(s(T123)), T124, T126)

The TRS R consists of the following rules:

avgA_in_gga(s(s(T23)), T24, T26) → U1_gga(T23, T24, T26, avgA_in_gga(T23, s(s(T24)), T26))
avgA_in_gga(s(T42), s(s(T43)), s(T45)) → U2_gga(T42, T43, T45, avgA_in_gga(s(T42), T43, T45))
avgA_in_gga(s(0), 0, 0) → avgA_out_gga(s(0), 0, 0)
avgA_in_gga(s(0), s(0), s(0)) → avgA_out_gga(s(0), s(0), s(0))
avgA_in_gga(s(T61), s(s(s(T62))), s(T64)) → U3_gga(T61, T62, T64, avgA_in_gga(s(s(T61)), T62, T64))
avgA_in_gga(T101, s(s(s(T102))), s(T104)) → U4_gga(T101, T102, T104, avgA_in_gga(T101, s(T102), T104))
avgA_in_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → U5_gga(T123, T124, T126, avgA_in_gga(s(s(T123)), T124, T126))
avgA_in_gga(0, 0, 0) → avgA_out_gga(0, 0, 0)
avgA_in_gga(0, s(0), 0) → avgA_out_gga(0, s(0), 0)
avgA_in_gga(0, s(s(0)), s(0)) → avgA_out_gga(0, s(s(0)), s(0))
U5_gga(T123, T124, T126, avgA_out_gga(s(s(T123)), T124, T126)) → avgA_out_gga(T123, s(s(s(s(s(s(T124)))))), s(s(T126)))
U4_gga(T101, T102, T104, avgA_out_gga(T101, s(T102), T104)) → avgA_out_gga(T101, s(s(s(T102))), s(T104))
U3_gga(T61, T62, T64, avgA_out_gga(s(s(T61)), T62, T64)) → avgA_out_gga(s(T61), s(s(s(T62))), s(T64))
U2_gga(T42, T43, T45, avgA_out_gga(s(T42), T43, T45)) → avgA_out_gga(s(T42), s(s(T43)), s(T45))
U1_gga(T23, T24, T26, avgA_out_gga(T23, s(s(T24)), T26)) → avgA_out_gga(s(s(T23)), T24, T26)

The argument filtering Pi contains the following mapping:
avgA_in_gga(x1, x2, x3)  =  avgA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avgA_out_gga(x1, x2, x3)  =  avgA_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
AVGA_IN_GGA(x1, x2, x3)  =  AVGA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVGA_IN_GGA(s(T42), s(s(T43)), s(T45)) → AVGA_IN_GGA(s(T42), T43, T45)
AVGA_IN_GGA(s(s(T23)), T24, T26) → AVGA_IN_GGA(T23, s(s(T24)), T26)
AVGA_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → AVGA_IN_GGA(s(s(T61)), T62, T64)
AVGA_IN_GGA(T101, s(s(s(T102))), s(T104)) → AVGA_IN_GGA(T101, s(T102), T104)
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124)))))), s(s(T126))) → AVGA_IN_GGA(s(s(T123)), T124, T126)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
AVGA_IN_GGA(x1, x2, x3)  =  AVGA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AVGA_IN_GGA(s(T42), s(s(T43))) → AVGA_IN_GGA(s(T42), T43)
AVGA_IN_GGA(s(s(T23)), T24) → AVGA_IN_GGA(T23, s(s(T24)))
AVGA_IN_GGA(s(T61), s(s(s(T62)))) → AVGA_IN_GGA(s(s(T61)), T62)
AVGA_IN_GGA(T101, s(s(s(T102)))) → AVGA_IN_GGA(T101, s(T102))
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124))))))) → AVGA_IN_GGA(s(s(T123)), T124)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

AVGA_IN_GGA(s(T42), s(s(T43))) → AVGA_IN_GGA(s(T42), T43)
AVGA_IN_GGA(s(s(T23)), T24) → AVGA_IN_GGA(T23, s(s(T24)))
AVGA_IN_GGA(s(T61), s(s(s(T62)))) → AVGA_IN_GGA(s(s(T61)), T62)
AVGA_IN_GGA(T101, s(s(s(T102)))) → AVGA_IN_GGA(T101, s(T102))
AVGA_IN_GGA(T123, s(s(s(s(s(s(T124))))))) → AVGA_IN_GGA(s(s(T123)), T124)


Used ordering: Knuth-Bendix order [KBO] with precedence:
s1 > AVGAINGGA2

and weight map:

s_1=1
AVGA_IN_GGA_2=0

The variable weight is 1

(14) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) YES